Skip to content

Commit 1b63b6f

Browse files
fix urls for tql org
1 parent fc31d3b commit 1b63b6f

File tree

6 files changed

+23
-24
lines changed

6 files changed

+23
-24
lines changed

.github/workflows/ci.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ jobs:
66
name: test
77
strategy:
88
matrix:
9-
os: [ubuntu-18.04] # macos-latest disabled to save quota
9+
os: [ubuntu-18.04, macos-latest] # macos-latest disabled to save quota
1010
python-version: [3.8]
1111
fail-fast: false
1212
steps:

README.md

Lines changed: 11 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -6,8 +6,8 @@
66

77
<p align="center">
88
<!-- tests (GitHub actions) -->
9-
<a href="https://github.com/quclub/tensorcircuit-dev/actions/workflows/ci.yml">
10-
<img src="https://img.shields.io/github/workflow/status/quclub/tensorcircuit-dev/ci/master?logo=github&style=flat-square&logo=github" />
9+
<a href="https://github.com/tencent-quantum-lab/tensorcircuit/actions/workflows/ci.yml">
10+
<img src="https://img.shields.io/github/workflow/status/tencent-quantum-lab/tensorcircuit/ci/master?logo=github&style=flat-square&logo=github" />
1111
</a>
1212
<!-- docs -->
1313
<a href="">
@@ -84,21 +84,21 @@ We also have [Docker support](/docker).
8484

8585
## Advantages
8686

87-
* Tensor network simulation engine based
87+
- Tensor network simulation engine based
8888

89-
* JIT, AD, vectorized parallelism compatible, GPU support
89+
- JIT, AD, vectorized parallelism compatible, GPU support
9090

91-
* Efficiency
91+
- Efficiency
9292

93-
* Time: 10 to 10^6 times acceleration compared to tfq or qiskit
93+
- Time: 10 to 10^6 times acceleration compared to tfq or qiskit
9494

95-
* Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)
95+
- Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)
9696

97-
* Elegance
97+
- Elegance
9898

99-
* Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions
99+
- Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions
100100

101-
* API design: quantum for humans, less code, more power
101+
- API design: quantum for humans, less code, more power
102102

103103
## Contributing
104104

@@ -120,6 +120,5 @@ Reference paper: https://arxiv.org/pdf/2106.05105.pdf and https://arxiv.org/pdf/
120120

121121
### VQEX - MBL
122122

123-
For the application of VQEX on MBL phase identification, see the [tutorial](https://github.com/quclub/tensorcircuit-tutorials/blob/master/tutorials/vqex_mbl.ipynb).
123+
For the application of VQEX on MBL phase identification, see the [tutorial](/docs/source/tutorials/vqex_mbl.ipynb).
124124
Reference paper: https://arxiv.org/pdf/2111.13719.pdf.
125-

README_cn.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,8 @@
22

33
<p align="center">
44
<!-- tests (GitHub actions) -->
5-
<a href="https://github.com/quclub/tensorcircuit-dev/actions/workflows/ci.yml">
6-
<img src="https://img.shields.io/github/workflow/status/quclub/tensorcircuit-dev/ci/master?logo=github&style=flat-square&logo=github" />
5+
<a href="https://github.com/tencent-quantum-lab/tensorcircuit/actions/workflows/ci.yml">
6+
<img src="https://img.shields.io/github/workflow/status/tencent-quantum-lab/tensorcircuit/ci/master?logo=github&style=flat-square&logo=github" />
77
</a>
88
<!-- docs -->
99
<a href="">
@@ -116,5 +116,5 @@ pip install tensorcircuit
116116

117117
### VQEX - MBL
118118

119-
VQEX 在 MBL 相位识别上的应用见 [教程](https://github.com/quclub/tensorcircuit-tutorials/blob/master/tutorials/vqex_mbl.ipynb)
119+
VQEX 在 MBL 相位识别上的应用见 [教程](/docs/source/tutorials/vqex_mbl.ipynb)
120120
参考论文: https://arxiv.org/pdf/2111.13719.pdf

docs/source/contribs/development_windows.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ Run TensorCircuit on Windows Machine with Docker
33

44
Contributed by `SexyCarrots <https://github.com/SexyCarrots>`_ (Xinghan Yang)
55

6-
(For linux machines, please review the `Docker README for linux <https://github.com/quclub/tensorcircuit-dev/blob/master/docker/README.md>`_ )
6+
(For linux machines, please review the `Docker README for linux <https://github.com/tencent-quantum-lab/tensorcircuit/blob/master/docker/README.md>`_ )
77

88
This note is only a step-by-step tutorial to help you build and run a Docker Container for Windows Machine users with the given dockerfile.
99
If you want to have a deeper dive in to Docker, please check the official `Docker Orientation <https://docs.docker.com/get-started/>`_
@@ -78,11 +78,11 @@ Build Image in through PyCharm or Command Line Interface
7878

7979
**For CLI command:**
8080

81-
Go to your local ``./tensorcircuit-dev/docker`` directory, then open your local CLI.
81+
Go to your local ``./tensorcircuit/docker`` directory, then open your local CLI.
8282

8383
.. code-block:: bash
8484
85-
cd ./tensorcircuit-dev/docker
85+
cd ./tensorcircuit/docker
8686
8787
Use the command:
8888

@@ -96,7 +96,7 @@ there is any interruption during the building.
9696

9797
**For PyCharm:**
9898

99-
Install the docker plugin within Pycharm, than open the dockerfile in the ``./tensorcircuit-dev/docker`` directory.
99+
Install the docker plugin within Pycharm, than open the dockerfile in the ``./tensorcircuit/docker`` directory.
100100
Choose Dockerfile to be the configuration, then run the dockerfile.
101101
Please keep your computer active while building the docker image. You need to build the image again from scratch if
102102
there is any interruption during the building.
@@ -130,7 +130,7 @@ Then, open docker desktop and open docker CLI:
130130
131131
ls
132132
133-
You would see all files and directories in ``./tensorcircuit-dev/`` listed.
133+
You would see all files and directories in ``./tensorcircuit/`` listed.
134134

135135
Go to the dir where all examples are:
136136

docs/source/contribution.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Guide for Contributors
22
============================
33

4-
We welcome everyone’s contributions! The development of TensorCircuit is open-sourced and centered on `GitHub <https://github.com/quclub/tensorcircuit-dev>`_.
4+
We welcome everyone’s contributions! The development of TensorCircuit is open-sourced and centered on `GitHub <https://github.com/tencent-quantum-lab/tensorcircuit>`_.
55

66
There are various ways to contribute:
77

docs/source/quickstart.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -138,7 +138,7 @@ The most common case and the most typical programming paradigm for TensorCircuit
138138
params = K.implicit_randn([2, n])
139139
print(vgf(params, n)) # get the quantum loss and the gradient
140140
141-
Also for a non-quantum example (linear regression) demonstrating the backend agnostic feature, variables with pytree support, AD/jit/vmap usage, and variational optimization loops. Please refer to the example script: `linear regression example <https://github.com/quclub/tensorcircuit-dev/blob/master/examples/universal_lr.py>`_.
141+
Also for a non-quantum example (linear regression) demonstrating the backend agnostic feature, variables with pytree support, AD/jit/vmap usage, and variational optimization loops. Please refer to the example script: `linear regression example <https://github.com/tencent-quantum-lab/tensorcircuit/blob/master/examples/universal_lr.py>`_.
142142
This example might be more friendly to the machine learning community since it is purely classical while also showcasing the main features and paradigms of tensorcircuit.
143143

144144
If the user has no intention to maintain the application code in a backend agnostic fashion, the API for ML frameworks can be more handily used and interleaved with the TensorCircuit API.
@@ -411,7 +411,7 @@ Some setup cases:
411411
# 3. state simulator like contractor provided by tensorcircuit, maybe better when there is ring topology for two-qubit gate layout
412412
tc.set_contractor("plain-experimental")
413413
414-
For advanced configurations on cotengra contractors, please refer to cotengra `doc <https://cotengra.readthedocs.io/en/latest/advanced.html>`__ and more fancy examples can be found at `contractor tutorial <https://github.com/quclub/tensorcircuit-tutorials/blob/master/tutorials/contractors.ipynb>`__.
414+
For advanced configurations on cotengra contractors, please refer to cotengra `doc <https://cotengra.readthedocs.io/en/latest/advanced.html>`__ and more fancy examples can be found at `contractor tutorial <https://github.com/tencent-quantum-lab/tensorcircuit-tutorials/blob/master/tutorials/contractors.ipynb>`__.
415415
416416
**Setup in Function or Context Level**
417417

0 commit comments

Comments
 (0)