Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
2e6c9d6
update PydapArrayWrapper to support backend batching
Mikejmnez Aug 12, 2025
dbaa889
rebase
Mikejmnez Nov 10, 2025
6b9c604
pydap-server it not necessary
Mikejmnez Aug 12, 2025
f07e6e2
set `batch=False` as default
Mikejmnez Aug 12, 2025
38d2bee
set `batch=False` as default in datatree
Mikejmnez Aug 12, 2025
0a2ac02
set `batch=False` as default in open groups as dict
Mikejmnez Aug 12, 2025
0a4f0e7
for flaky, install pydap from repo for now
Mikejmnez Aug 12, 2025
eddd6bb
initial tests - quantify cached url
Mikejmnez Aug 13, 2025
cb0261f
adds tests to datatree backend to assert multiple dimensions download…
Mikejmnez Aug 13, 2025
c69ab80
update testing to show number of download urls
Mikejmnez Aug 13, 2025
6668948
simplified logic
Mikejmnez Aug 13, 2025
4300483
specify cached session debug name to actually cache urls
Mikejmnez Aug 13, 2025
e5f80ff
fix for mypy
Mikejmnez Aug 13, 2025
b95aaf6
user visible changes on `whats-new.rst`
Mikejmnez Aug 13, 2025
80a74ac
impose sorted to `get_dimensions` method
Mikejmnez Aug 13, 2025
5c37145
reformat `whats-new.rst`
Mikejmnez Aug 13, 2025
8024813
revert to install pydap from conda and not from repo
Mikejmnez Aug 13, 2025
070d9bc
expose checksum as user kwarg
Mikejmnez Aug 13, 2025
e705e60
include `checksums` optional argument in `whats-new`
Mikejmnez Aug 13, 2025
45db12f
update to newest release of pydap via pip until conda install is avai…
Mikejmnez Aug 13, 2025
bca8a98
use requests_cache session with retry-params when 500 errors occur
Mikejmnez Aug 13, 2025
3a15909
update env yml file to use new pydap release via conda
Mikejmnez Aug 14, 2025
23cf53b
turn on testing on datatree from test.opendap.org
Mikejmnez Nov 10, 2025
31d1be2
rebase with main
Mikejmnez Nov 10, 2025
796ec7a
update what`s new
Mikejmnez Nov 10, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion ci/requirements/environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@ dependencies:
- pre-commit
- pyarrow # pandas raises a deprecation warning without this, breaking doctests
- pydap
- pydap-server
- pytest
- pytest-asyncio
- pytest-cov
Expand Down
3 changes: 3 additions & 0 deletions doc/whats-new.rst
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,9 @@ New Features
By `David Huard <https://github.com/huard>`_.
- Support comparing :py:class:`DataTree` objects with :py:func:`testing.assert_allclose` (:pull:`10887`).
By `Justus Magin <https://github.com/keewis>`_.
- Improved ``pydap`` backend behavior and performance when using :py:func:`open_dataset`, :py:func:`open_datatree` when downloading dap4 (opendap) data (:issue:`10628`, :pull:`10629`).
``batch=True|False`` is a new ``backend_kwarg`` that further enables downloading multiple arrays in single response. In addition ``checksums`` is added as optional argument to be passed to ``pydap`` backend.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you help me undestand -- why would a user not want to enable batch mode if they are using a new enough version of pydap?

Copy link
Contributor Author

@Mikejmnez Mikejmnez Oct 7, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That is a good question. The route map for pydap is for batch=True always for dap4. So a dap4-url would automatically do this batch=true thingy. But right now, batch=true or false follow slightly different pathways internally within pydap (some of it very old, as you may know). In the roadmap for pydap, there is definitely is a major refactoring in sight.

FYI: Even when batch=False by default, dimension data is always batched (downloaded at once) when protocol= dap4, as long as they are using a "new enough version of pydap (>=3.5.6)" (see new line 177 on backends.pydap_). I think this is the first step to making this dap4 <--> batch=True in the future.

But enabling batch=True for streaming/downloading data that is being subset by Xarray (e.g. ds.isel(lat=slice1, lon=slice2).to_netcdf can become rapidly complex (in particular in the presence of hierarchies). I done plenty of testing (with both hierarchical data, and data on staggered grids), and while things work well so far, I think "soft launching" this feature on xarray makes the most sense to me. It seems safer to me at least.

By `Miguel Jimenez-Urias <https://github.com/Mikejmnez>`_.

Breaking Changes
~~~~~~~~~~~~~~~~
Expand Down
113 changes: 93 additions & 20 deletions xarray/backends/pydap_.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,10 @@


class PydapArrayWrapper(BackendArray):
def __init__(self, array):
def __init__(self, array, batch=None, checksums=True):
self.array = array
self._batch = batch
self._checksums = checksums

@property
def shape(self) -> tuple[int, ...]:
Expand All @@ -53,13 +55,19 @@ def __getitem__(self, key):
)

def _getitem(self, key):
result = robust_getitem(self.array, key, catch=ValueError)
# in some cases, pydap doesn't squeeze axes automatically like numpy
result = np.asarray(result)
axis = tuple(n for n, k in enumerate(key) if isinstance(k, integer_types))
if result.ndim + len(axis) != self.array.ndim and axis:
result = np.squeeze(result, axis)
if self._batch and hasattr(self.array, "dataset"):
# this are both True only for pydap>3.5.5
from pydap.client import data_check, get_batch_data

dataset = self.array.dataset
get_batch_data(self.array, checksums=self._checksums, key=key)
result = data_check(np.asarray(dataset[self.array.id].data), key)
else:
result = robust_getitem(self.array, key, catch=ValueError)
result = np.asarray(result.data)
axis = tuple(n for n, k in enumerate(key) if isinstance(k, integer_types))
if result.ndim + len(axis) != self.array.ndim and axis:
result = np.squeeze(result, axis)
return result


Expand All @@ -82,7 +90,15 @@ class PydapDataStore(AbstractDataStore):
be useful if the netCDF4 library is not available.
"""

def __init__(self, dataset, group=None):
def __init__(
self,
dataset,
group=None,
session=None,
batch=None,
protocol=None,
checksums=True,
):
"""
Parameters
----------
Expand All @@ -92,6 +108,9 @@ def __init__(self, dataset, group=None):
"""
self.dataset = dataset
self.group = group
self._batch = batch
self._protocol = protocol
self._checksums = checksums # true by default

@classmethod
def open(
Expand All @@ -104,6 +123,8 @@ def open(
timeout=None,
verify=None,
user_charset=None,
batch=None,
checksums=True,
):
from pydap.client import open_url
from pydap.net import DEFAULT_TIMEOUT
Expand All @@ -118,6 +139,7 @@ def open(
DeprecationWarning,
)
output_grid = False # new default behavior

kwargs = {
"url": url,
"application": application,
Expand All @@ -133,22 +155,45 @@ def open(
elif hasattr(url, "ds"):
# pydap dataset
dataset = url.ds
args = {"dataset": dataset}
args = {"dataset": dataset, "checksums": checksums}
if group:
# only then, change the default
args["group"] = group
if url.startswith(("http", "dap2")):
args["protocol"] = "dap2"
elif url.startswith("dap4"):
args["protocol"] = "dap4"
if batch:
args["batch"] = batch
return cls(**args)

def open_store_variable(self, var):
data = indexing.LazilyIndexedArray(PydapArrayWrapper(var))
try:
if hasattr(var, "dims"):
dimensions = [
dim.split("/")[-1] if dim.startswith("/") else dim for dim in var.dims
]
except AttributeError:
else:
# GridType does not have a dims attribute - instead get `dimensions`
# see https://github.com/pydap/pydap/issues/485
dimensions = var.dimensions
if (
self._protocol == "dap4"
and var.name in dimensions
and hasattr(var, "dataset") # only True for pydap>3.5.5
):
if not var.dataset._batch_mode:
# for dap4, always batch all dimensions at once
var.dataset.enable_batch_mode()
data_array = self._get_data_array(var)
data = indexing.LazilyIndexedArray(data_array)
if not self._batch and var.dataset._batch_mode:
# if `batch=False``, restore it for all other variables
var.dataset.disable_batch_mode()
else:
# all non-dimension variables
data = indexing.LazilyIndexedArray(
PydapArrayWrapper(var, self._batch, self._checksums)
)

return Variable(dimensions, data, var.attributes)

def get_variables(self):
Expand All @@ -166,6 +211,7 @@ def get_variables(self):
# check the key is not a BaseType or GridType
if not isinstance(self.ds[var], GroupType)
]

return FrozenDict((k, self.open_store_variable(self.ds[k])) for k in _vars)

def get_attrs(self):
Expand All @@ -177,18 +223,33 @@ def get_attrs(self):
"libdap",
"invocation",
"dimensions",
"path",
"Maps",
)
attrs = self.ds.attributes
list(map(attrs.pop, opendap_attrs, [None] * 6))
attrs = dict(self.ds.attributes)
list(map(attrs.pop, opendap_attrs, [None] * 8))
return Frozen(attrs)

def get_dimensions(self):
return Frozen(self.ds.dimensions)
return Frozen(sorted(self.ds.dimensions))

@property
def ds(self):
return get_group(self.dataset, self.group)

def _get_data_array(self, var):
"""gets dimension data all at once, storing the numpy
arrays within a cached dictionary
"""
from pydap.client import get_batch_data

if not var._is_data_loaded():
# data has not been deserialized yet
# runs only once per store/hierarchy
get_batch_data(var, checksums=self._checksums)

return self.dataset[var.id].data


class PydapBackendEntrypoint(BackendEntrypoint):
"""
Expand Down Expand Up @@ -250,6 +311,8 @@ def open_dataset(
timeout=None,
verify=None,
user_charset=None,
batch=None,
checksums=True,
) -> Dataset:
store = PydapDataStore.open(
url=filename_or_obj,
Expand All @@ -260,6 +323,8 @@ def open_dataset(
timeout=timeout,
verify=verify,
user_charset=user_charset,
batch=batch,
checksums=checksums,
)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(store):
Expand Down Expand Up @@ -292,6 +357,8 @@ def open_datatree(
timeout=None,
verify=None,
user_charset=None,
batch=None,
checksums=True,
) -> DataTree:
groups_dict = self.open_groups_as_dict(
filename_or_obj,
Expand All @@ -304,10 +371,12 @@ def open_datatree(
decode_timedelta=decode_timedelta,
group=group,
application=None,
session=None,
timeout=None,
verify=None,
user_charset=None,
session=session,
timeout=timeout,
verify=application,
user_charset=user_charset,
batch=batch,
checksums=checksums,
)

return datatree_from_dict_with_io_cleanup(groups_dict)
Expand All @@ -329,6 +398,8 @@ def open_groups_as_dict(
timeout=None,
verify=None,
user_charset=None,
batch=None,
checksums=True,
) -> dict[str, Dataset]:
from xarray.core.treenode import NodePath

Expand All @@ -340,6 +411,8 @@ def open_groups_as_dict(
timeout=timeout,
verify=verify,
user_charset=user_charset,
batch=batch,
checksums=checksums,
)

# Check for a group and make it a parent if it exists
Expand Down
52 changes: 52 additions & 0 deletions xarray/tests/test_backends.py
Original file line number Diff line number Diff line change
Expand Up @@ -6560,6 +6560,58 @@ def test_session(self) -> None:
)


@requires_pydap
@network
@pytest.mark.parametrize("protocol", ["dap2", "dap4"])
@pytest.mark.parametrize("batch", [False, True])
def test_batchdap4_downloads(tmpdir, protocol, batch) -> None:
"""Test that in dap4, all dimensions are downloaded at once"""
import pydap
from pydap.net import create_session

_version_ = Version(pydap.__version__)
# Create a session with pre-set params in pydap backend, to cache urls
cache_name = tmpdir / "debug"
session = create_session(use_cache=True, cache_kwargs={"cache_name": cache_name})
session.cache.clear()
url = "https://test.opendap.org/opendap/hyrax/data/nc/coads_climatology.nc"

if protocol == "dap4":
ds = open_dataset(
url.replace("https", protocol),
engine="pydap",
session=session,
decode_times=False,
batch=batch,
)
if _version_ > Version("3.5.5"):
# total downloads are:
# 1 dmr + 1 dap (dimensions)
assert len(session.cache.urls()) == 2
# now load the rest of the variables
ds.load()
if batch:
# all non-dimensions are downloaded in a single https requests
assert len(session.cache.urls()) == 2 + 1
if not batch:
# each non-dimension array is downloaded with an individual
# https requests
assert len(session.cache.urls()) == 2 + 4
else:
assert len(session.cache.urls()) == 4
ds.load()
assert len(session.cache.urls()) == 4 + 4
elif protocol == "dap2":
ds = open_dataset(
url.replace("https", protocol),
engine="pydap",
session=session,
decode_times=False,
)
# das + dds + 3 dods urls
assert len(session.cache.urls()) == 5


class TestEncodingInvalid:
def test_extract_nc4_variable_encoding(self) -> None:
var = xr.Variable(("x",), [1, 2, 3], {}, {"foo": "bar"})
Expand Down
29 changes: 24 additions & 5 deletions xarray/tests/test_backends_datatree.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@

import numpy as np
import pytest
from packaging.version import Version

import xarray as xr
from xarray import DataTree, load_datatree, open_datatree, open_groups
Expand Down Expand Up @@ -569,8 +570,6 @@ def test_roundtrip_using_filelike_object(self, tmpdir, simple_datatree) -> None:
class TestPyDAPDatatreeIO:
"""Test PyDAP backend for DataTree."""

pytestmark = pytest.mark.xfail(reason="test.opendap.org reports a 404 error")

engine: T_DataTreeNetcdfEngine | None = "pydap"
# you can check these by adding a .dmr to urls, and replacing dap4 with http
unaligned_datatree_url = (
Expand All @@ -582,7 +581,8 @@ class TestPyDAPDatatreeIO:
simplegroup_datatree_url = "dap4://test.opendap.org/opendap/dap4/SimpleGroup.nc4.h5"

def test_open_datatree_unaligned_hierarchy(
self, url=unaligned_datatree_url
self,
url=unaligned_datatree_url,
) -> None:
with pytest.raises(
ValueError,
Expand Down Expand Up @@ -615,7 +615,7 @@ def test_open_groups(self, url=unaligned_datatree_url) -> None:
) as expected:
assert_identical(unaligned_dict_of_datasets["/Group1/subgroup1"], expected)

def test_inherited_coords(self, url=simplegroup_datatree_url) -> None:
def test_inherited_coords(self, tmpdir, url=simplegroup_datatree_url) -> None:
"""Test that `open_datatree` inherits coordinates from root tree.

This particular h5 file is a test file that inherits the time coordinate from the root
Expand All @@ -641,7 +641,19 @@ def test_inherited_coords(self, url=simplegroup_datatree_url) -> None:
│ Temperature (time, Z, Y, X) float32 ...
| Salinity (time, Z, Y, X) float32 ...
"""
tree = open_datatree(url, engine=self.engine)
import pydap
from pydap.net import create_session

# Create a session with pre-set retry params in pydap backend, to cache urls
cache_name = tmpdir / "debug"
session = create_session(
use_cache=True, cache_kwargs={"cache_name": cache_name}
)
session.cache.clear()

_version_ = Version(pydap.__version__)

tree = open_datatree(url, engine=self.engine, session=session)
assert set(tree.dims) == {"time", "Z", "nv"}
assert tree["/SimpleGroup"].coords["time"].dims == ("time",)
assert tree["/SimpleGroup"].coords["Z"].dims == ("Z",)
Expand All @@ -652,6 +664,13 @@ def test_inherited_coords(self, url=simplegroup_datatree_url) -> None:
list(expected.dims) + ["Z", "nv"]
)

if _version_ > Version("3.5.5"):
# Total downloads are: 1 dmr, + 1 dap url for all dimensions for each group
assert len(session.cache.urls()) == 3
else:
# 1 dmr + 1 dap url per dimension (total there are 4 dimension arrays)
assert len(session.cache.urls()) == 5

def test_open_groups_to_dict(self, url=all_aligned_child_nodes_url) -> None:
aligned_dict_of_datasets = open_groups(url, engine=self.engine)
aligned_dt = DataTree.from_dict(aligned_dict_of_datasets)
Expand Down
Loading