|
| 1 | +UNIMO |
| 2 | +==== |
| 3 | +Code for the findings of ACL2022 long paper [UNIMO-2: End-to-End Unified Vision-Language Grounded Learning](https://arxiv.org/pdf/2203.09067.pdf) |
| 4 | + |
| 5 | + |
| 6 | +Abstract |
| 7 | +--- |
| 8 | + |
| 9 | +Vision-Language Pre-training (VLP) has achieved impressive performance on various cross-modal downstream tasks. |
| 10 | +However, most existing methods can only learn from aligned image-caption data and rely heavily on expensive regional |
| 11 | +features, which greatly limits their scalability and performance. In this paper, we propose an end-to-end unified-modal |
| 12 | +pre-training framework, namely UNIMO-2, for joint learning on both aligned image-caption data and unaligned image-only |
| 13 | +and text-only corpus. We build a unified Transformer model to jointly learn visual representations, textual |
| 14 | +representations and semantic alignment between images and texts. In particular, we propose to conduct grounded learning |
| 15 | +on both images and texts via a sharing grounded space, which helps bridge unaligned images and texts, and align the |
| 16 | +visual and textual semantic spaces on different types of corpora. The experiments show that our grounded learning |
| 17 | +method can improve textual and visual semantic alignment for improving performance on various cross-modal tasks. |
| 18 | +Moreover, benefiting from effective joint modeling of different types of corpora, our model also achieves impressive |
| 19 | +performance on single-modal visual and textual tasks. Our code and models are public at the UNIMO project page |
| 20 | +\url{https://unimo-ptm.github.io}. |
| 21 | + |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + |
| 26 | +Dependencies |
| 27 | +--- |
| 28 | +python3.7.4\ |
| 29 | +cuda-10.1\ |
| 30 | +cudnn_v7.6\ |
| 31 | +nccl2.4.2\ |
| 32 | +java1.8 |
| 33 | +paddlepaddle-gpu==2.1.2\ |
| 34 | +pyrouge==0.1.3 |
| 35 | + |
| 36 | + |
| 37 | +Pre-trained Models |
| 38 | +--- |
| 39 | +Similar to UNIMO, UNIMO-2 adopts large-scale text corpus, image collections and image-text aligned datasets as the pre-training data. |
| 40 | +We provide pre-trained UNIMO-2 models: |
| 41 | + |
| 42 | +``` |
| 43 | +cd /path/to/model_files |
| 44 | +wget --no-check-certificate -q https://unimo-2.bj.bcebos.com/model/UNIMO-2.tar.gz |
| 45 | +tar -zxf UNIMO-2.tar.gz |
| 46 | +``` |
| 47 | + |
| 48 | + |
| 49 | +Experiments |
| 50 | +--- |
| 51 | + |
| 52 | +Our fine-tuning experiments are carried on V100 GPU. Here are the results from the UNIMO-2 model: |
| 53 | + |
| 54 | + |
| 55 | +1 Cross-Modal Tasks |
| 56 | +--- |
| 57 | + |
| 58 | + |
| 59 | +### (1) Image-Text Retrieval |
| 60 | + |
| 61 | +#### Download Flickr30k dataset: |
| 62 | + |
| 63 | +``` |
| 64 | +cd /path/to/data |
| 65 | +wget --no-check-certificate -q https://unimo-2.bj.bcebos.com/data/Flickr30k.tar.gz |
| 66 | +tar -zxf Flickr30k.tar.gz |
| 67 | +``` |
| 68 | + |
| 69 | +#### Run the following common to train and evaluate on the Flickr30k dataset: |
| 70 | + |
| 71 | +``` |
| 72 | +bash ./script/retrieval-grounded/Flickr30k-fleet/run.sh |
| 73 | +``` |
| 74 | + |
| 75 | +#### Evaluation Results: |
| 76 | + |
| 77 | +Results of Image Retrieval task on Flickr30k dataset |
| 78 | + |
| 79 | +| Model | R@1 | R@5 | R@10 | |
| 80 | +| ----------- | ------- | ------- | ------- | |
| 81 | +| UNIMO-2 (zero-shot) | 72.70 | 91.18 | 94.60 | |
| 82 | +| UNIMO-2 (finetuned) | 80.14 | 95.58 | 97.75 | |
| 83 | + |
| 84 | +Results of Text Retrieval task on Flickr30k dataset |
| 85 | + |
| 86 | +| Model | R@1 | R@5 | R@10 | |
| 87 | +| ----------- | ------- | ------- | ------- | |
| 88 | +| UNIMO-2 (zero-shot) | 88.46 | 96.84 | 98.92 | |
| 89 | +| UNIMO-2 (finetuned) | 92.01 | 99.31 | 99.51 | |
| 90 | + |
| 91 | + |
| 92 | + |
| 93 | +### (2) Image Caption Generation |
| 94 | + |
| 95 | +#### Download COCO Caption dataset: |
| 96 | + |
| 97 | +``` |
| 98 | +cd /path/to/data |
| 99 | +wget --no-check-certificate -q https://unimo-2.bj.bcebos.com/data/coco.tar.gz |
| 100 | +tar -zxf coco.tar.gz |
| 101 | +``` |
| 102 | + |
| 103 | +#### Download evaluation script: |
| 104 | + |
| 105 | +``` |
| 106 | +mkdir src/eval/tasks |
| 107 | +cd src/eval/tasks |
| 108 | +wget --no-check-certificate -q https://unimo.bj.bcebos.com/eval_script/coco.tar.gz |
| 109 | +tar -zxf coco.tar.gz |
| 110 | +``` |
| 111 | + |
| 112 | +#### Run the following common to train and evaluate on the COCO Caption dataset: |
| 113 | + |
| 114 | +``` |
| 115 | +bash ./script/img2txt-grounded/coco-oscar/run.sh |
| 116 | +``` |
| 117 | + |
| 118 | + |
| 119 | +#### Evaluation Results: |
| 120 | + |
| 121 | +| Model | BLUE4 | CIDEr | |
| 122 | +| ----------- | ------- | ------- | |
| 123 | +| UNIMO-2 | 39.7 | 131.2 | |
| 124 | + |
| 125 | + |
| 126 | + |
| 127 | +### (3) Visual Entailment |
| 128 | +####todo |
| 129 | + |
| 130 | + |
| 131 | + |
| 132 | +### (4) Visual Question Answering (VQA) |
| 133 | +####todo |
| 134 | + |
| 135 | + |
| 136 | + |
| 137 | + |
| 138 | + |
| 139 | +2 Visual Tasks |
| 140 | +--- |
| 141 | + |
| 142 | +### (1) Image Classification |
| 143 | +####todo |
| 144 | + |
| 145 | +### (2) Zero-shot Image Classification |
| 146 | +####todo |
| 147 | + |
| 148 | + |
| 149 | + |
| 150 | +3 Textual Tasks |
| 151 | +--- |
| 152 | + |
| 153 | +### (1) Natural Language Inference |
| 154 | + |
| 155 | +#### Download MNLI-AX dataset: |
| 156 | +``` |
| 157 | +cd /path/to/data |
| 158 | +wget --no-check-certificate -q https://unimo-2.bj.bcebos.com/data/MNLI-AX.tar.gz |
| 159 | +tar -zxf MNLI-AX.tar.gz |
| 160 | +``` |
| 161 | + |
| 162 | +#### Run the following common to train and evaluate on the MNLI-AX dataset: |
| 163 | + |
| 164 | +``` |
| 165 | +bash ./script/classification/MNLI-AX/run.sh |
| 166 | +``` |
| 167 | + |
| 168 | + |
| 169 | +#### Evaluation Results: |
| 170 | + |
| 171 | +| Model | Acc-(m/mm) | |
| 172 | +| ----------- | ------- | |
| 173 | +| UNIMO-2 | 87.5/87.5 | |
| 174 | + |
| 175 | + |
| 176 | + |
| 177 | + |
| 178 | +### (2) Sentiment Classification |
| 179 | +####todo |
| 180 | + |
| 181 | + |
| 182 | + |
| 183 | + |
| 184 | + |
| 185 | +### (3) Similarity Tasks |
| 186 | +####todo |
| 187 | + |
| 188 | + |
| 189 | + |
| 190 | + |
| 191 | + |
| 192 | +### (4) Linguistic Acceptability Judgments |
| 193 | +####todo |
| 194 | + |
| 195 | + |
| 196 | + |
| 197 | + |
| 198 | + |
| 199 | +Citation |
| 200 | +--- |
| 201 | +If you find our paper and code useful, please cite the following paper: |
| 202 | +``` |
| 203 | +@article{li2022unimo, |
| 204 | + title={UNIMO-2: End-to-End Unified Vision-Language Grounded Learning}, |
| 205 | + author={Li, Wei and Gao, Can and Niu, Guocheng and Xiao, Xinyan and Liu, Hao and Liu, Jiachen and Wu, Hua and Wang, Haifeng}, |
| 206 | + journal={arXiv preprint arXiv:2203.09067}, |
| 207 | + year={2022} |
| 208 | +} |
| 209 | +``` |
| 210 | + |
| 211 | +Contact information |
| 212 | +--- |
| 213 | + |
| 214 | +For help or issues using UNIMO-2, please submit a GitHub issue. |
| 215 | + |
| 216 | +For personal communication related to UNIMO, please contact Wei Li (liwei85@baidu.com), Can Gao (gaocan01@baidu.com), Guocheng Niu (niuguocheng@baidu.com). |
0 commit comments