@@ -8,11 +8,11 @@ either `0` or `-1`. For `Real` `z`, the domain of the branch `k = -1` is `[-1/e,
88domain of the branch `k = 0` is `[-1/e, Inf]`. For `Complex` `z`, and all `k`, the domain is
99the complex plane.
1010
11- ```jldoctest
12- julia> lambertw(-1/e , -1)
11+ ```jldoctest; setup=:(using SpecialFunctions)
12+ julia> lambertw(-1/ℯ , -1)
1313-1.0
1414
15- julia> lambertw(-1/e , 0)
15+ julia> lambertw(-1/ℯ , 0)
1616-1.0
1717
1818julia> lambertw(0, 0)
@@ -268,20 +268,19 @@ The result is accurate to Float64 precision for abs(z) < 0.32.
268268If `k=-1` and `imag(z) < 0`, the value on the branch `k=1` is returned.
269269
270270# Example
271- ```jldoctest
272- julia> lambertw(-1/e + 1e-18, -1)
271+ ```jldoctest; setup=:(using SpecialFunctions)
272+ julia> lambertw(-1/ℯ + 1e-18, -1)
273273-1.0
274274
275275julia> lambertwbp(1e-18, -1)
276276-2.331643983409312e-9
277277
278- # Same result, but 1000 times slower
279- julia> convert(Float64, (lambertw(-BigFloat(1)/e + BigFloat(10)^(-18), -1) + 1))
278+ julia> convert(Float64, (lambertw(-big(1)/ℯ + big(10)^(-18), -1) + 1)) # Same result, but 1000 times slower
280279-2.331643983409312e-9
281280```
282281
283282!!! note
284- `lambertwbp` uses a series expansion about the branch point `z=-1/e ` to avoid loss of precision.
283+ `lambertwbp` uses a series expansion about the branch point `z=-1/ℯ ` to avoid loss of precision.
285284 The loss of precision in `lambertw` is analogous to the loss of precision
286285 in computing the `sqrt(1-x)` for `x` close to `1`.
287286"""
0 commit comments