@@ -196,13 +196,13 @@ macro define_ternary_dual_op(f, xyz_body, xy_body, xz_body, yz_body, x_body, y_b
196196end
197197
198198# Support complex-valued functions such as `hankelh1`
199- function dual_definition_retval (:: Val{T} , val:: Real , deriv:: Real , partial:: Partials ) where {T}
199+ @inline function dual_definition_retval (:: Val{T} , val:: Real , deriv:: Real , partial:: Partials ) where {T}
200200 return Dual {T} (val, deriv * partial)
201201end
202- function dual_definition_retval (:: Val{T} , val:: Real , deriv1:: Real , partial1:: Partials , deriv2:: Real , partial2:: Partials ) where {T}
202+ @inline function dual_definition_retval (:: Val{T} , val:: Real , deriv1:: Real , partial1:: Partials , deriv2:: Real , partial2:: Partials ) where {T}
203203 return Dual {T} (val, _mul_partials (partial1, partial2, deriv1, deriv2))
204204end
205- function dual_definition_retval (:: Val{T} , val:: Complex , deriv:: Union{Real,Complex} , partial:: Partials ) where {T}
205+ @inline function dual_definition_retval (:: Val{T} , val:: Complex , deriv:: Union{Real,Complex} , partial:: Partials ) where {T}
206206 reval, imval = reim (val)
207207 if deriv isa Real
208208 p = deriv * partial
@@ -212,7 +212,7 @@ function dual_definition_retval(::Val{T}, val::Complex, deriv::Union{Real,Comple
212212 return Complex (Dual {T} (reval, rederiv * partial), Dual {T} (imval, imderiv * partial))
213213 end
214214end
215- function dual_definition_retval (:: Val{T} , val:: Complex , deriv1:: Union{Real,Complex} , partial1:: Partials , deriv2:: Union{Real,Complex} , partial2:: Partials ) where {T}
215+ @inline function dual_definition_retval (:: Val{T} , val:: Complex , deriv1:: Union{Real,Complex} , partial1:: Partials , deriv2:: Union{Real,Complex} , partial2:: Partials ) where {T}
216216 reval, imval = reim (val)
217217 if deriv1 isa Real && deriv2 isa Real
218218 p = _mul_partials (partial1, partial2, deriv1, deriv2)
0 commit comments